Inversion de données en traitement du signal et des images - régularisation parcimonieuse et algorithmes de minimisation L0


Charles Soussen (Centre de Recherche en Automatique de Nancy (CRAN, UMR CNRS 7039), Université de Lorraine)
May 23, 2017 — 14:00 — "Salle du conseil du L2S"

Abstract

Dans la première partie de l’exposé, je présenterai différents problèmes inverses auxquels je me suis intéressé ces dernières années et les contextes applicatifs associés : reconstruction d’images en tomographie, analyse d’images biologiques et d’images hyperspectrales en microscopie, problèmes d’inversion de données en spectroscopie optique avec applications biomédicales. Lorsque les données disponibles sont en nombre limité et partiellement informatives sur la quantité à estimer (problèmes inverses mal posés), la prise en compte d’informations a priori sur les inconnues est indispensable, et s’effectue par le biais des techniques de régularisation. Dans la seconde partie de l’exposé, je présenterai plus particulièrement la régularisation parcimonieuse de problèmes inverses, basée sur la minimisation de la “norme” l0. Les algorithmes heuristiques proposés sont conçus pour minimiser des critères mixtes L2-L0 du type min_x J(x;lambda) = || y - Ax ||_2^2 + lambda || x ||_0. Ce problème d’optimisation est connu pour être fortement non-convexe et NP- difficile. Les heuristiques proposées (appelées algorithmes “gloutons”) sont définies en tant qu’extensions d’Orthogonal Least Squares (OLS). Leur développement est motivé par le très bon comportement empirique d’OLS et de ses versions dérivées lorsque la matrice A est mal conditionnée. Je présenterai deux types d’algorithmes pour minimiser J(x;lambda) à lambda fixé et pour un continuum de valeurs de lambda. Finalement, je présenterai quelques résultats théoriques visant à garantir que les algorithmes gloutons permettent de reconstruire exactement le support d’une représentation parcimonieuse y = Ax, c’est-à-dire le support du vecteur x.

Biography

Charles Soussen est né en France en 1972. Il est diplômé de l’Ecole Nationale Supérieure en Informatique et Mathématiques Appliquées, Grenoble (ENSIMAG) en 1996. Il a obtenu sa thèse en traitement du signal et des images au Laboratoire des Signaux et Systèmes (L2S), Université de Paris-Sud, Orsay, en 2000, et son Habilitation à Diriger des Recherches à l’Université de Lorraine en 2013. Il est actuellement Maître de Conférences à l’Université de Lorraine, et au Centre de Recherche en Automatique de Nancy depuis 2005. Ses thématiques de recherche concernent les problèmes inverses et l’approximation parcimonieuse.